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Abstract

Perhaps the most iconic feature of melting Arctic sea ice is the distinctive ponds that form on its
surface. The geometrical patterns describing how melt water is distributed over the surface largely
determine the solar reflectance and transmittance of the sea ice cover, which are key parameters in
climate modeling and upper ocean ecology. In order to help develop a predictive theoretical approach
to studying melting sea ice, and the resulting patterns of light and dark regions on its surface in
particular, we look to the statistical mechanics of phase transitions and introduce a two-dimensional
random field Ising model which accounts for only the most basic physics in the system. The ponds are
identified as metastable states in the model, where the binary spin variable corresponds to the presence
of melt water or ice on the sea ice surface. With the lattice spacing determined by snow topography
data as the only measured parameter input into the model, energy minimization drives the system
toward realistic pond configurations from an initially random state. The model captures the essential
mechanism of pattern formation of Arctic melt ponds, with predictions that agree very closely with
observed scaling of pond sizes and transition in pond fractal dimension.

1. Introduction

While snow and ice reflect most of the sunlight incident on Arctic sea ice, melt ponds absorb most of it. The
ponds largely control the albedo, or solar reflectance of sea ice, as well as its transmittance [ 1-5], which in turn
impact the heat and mass balances of the ice cover and the partitioning of energy in the upper ocean and lower
atmosphere. The ponds play a critical role in ice-albedo feedback, a key mechanism in the rapid decline of the
summer Arcticice pack [6]. In fact, by accounting for ponds in climate simulations, predicted ice pack volumes
are significantly lower [7], and the yearly Arctic sea ice minimum can be accurately forecast from melt pond area
in spring [4]. The impact of melt pond evolution extends into the biosphere as well [8—10], where the ponds act
as windows for light to shine into the upper ocean, affecting Arctic marine ecology. Typical pond configurations
are shown in figure 1(a).

There has been significant progress on numerical models of melt pond evolution [7, 3-5], although current
generation melt pond parameterizations in climate models track melt water volume, not how melt water is
distributed on the ice surface. However, the geometry of melt ponds and their spatial patterns impacts various
seaice and upper ocean processes such as albedo evolution, the break-up of floes, the evolution of the floe size
distribution, and the patterns of light in and under the ice, which can affect photosynthetic activity and the
ecology of microbial communities.

There are two key, benchmark observations of melt pond geometry that must be accounted for by a
statistical physics theory of melt ponds. The first dates back to the 1998 SHEBA expedition and the measurement
of melt pond sizes from images taken from helicopters [11]. The pond size distribution function prob(A)
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Figure 1. Melt pond configurations and the update step in Glauber dynamics. (a) Helicopter photos of melt ponds on sea ice in the
western Beaufort Sea (Perovich). On the left, each side of this 15 July 1998 photo is 826 m; on the right, each side of this 14 August 2005
photo is 193 m. (b) Illustration of the tiebreaker update step in Glauber dynamics. Here each site i is assigned a pre-meltice height h;,
and colored dark blue for water (s; = +1) and white for ice (s; = —1). Site P, to be updated, is adjacent to two water sites A and D, and
two ice sites Band C. Since water tends to fill troughs, we require thatsp = +1ifhp < 0,and —1 otherwise.

exhibits power law scaling prob(A) ~ AS with the observed value of the exponent ¢ for pond areas in the range
10m* < A < 1000 m* being about —3/2.

Area-perimeter analysis of images of melt ponds from SHEBA as well as the 2005 Healy—Oden Trans Arctic
Expedition (HOTRAX) has shown that as the ponds grow and coalesce into much larger connected structures
they display a transition in fractal geometry [12], evolving from simple Euclidean shapes into complex, self-
similar regions whose boundaries behave like space-filling curves. The fractal dimension of the boundary curves
transitions from 1 to about 2 around a critical area of about 100 m?. In addition to constraining the geometry of
melt pond evolution, the area-perimeter relationship is key to quantifying components of pond growth, such as
vertical versus lateral melt, regulating the extent of the water-ice interface where lateral expansion of the ponds
can occur.

Recent work shows that these geometrical characteristics are consistent with behavior exhibited by
continuum percolation models [13—15]. In [16] a melt pond boundary is the intersection of a random surface
representing the snow topography with a horizontal plane representing the water level. As the plane rises the
ponds grow and coalesce. An autoregressive class of anisotropic random Fourier surfaces with correlation
parameters based on snow data provides topographies that yield realistic ponds, the observed transition in
fractal dimension, and a framework to analyze how the shape of the fractal transition depends on topographic
characteristics.

In [17] a void model for melt ponds is introduced, where disks of varying size which represent ice and can
overlap are placed randomly on the plane, with the voids between them representing the ponds. Data on pond
sizes, area fractions, and correlations measured from helicopter photos of melt ponds are incorporated through
parameters input into the model. The model yields the observed fractal transition and pond size distribution,
and can be used to explore the generality of the behavior.

Here we address the challenge of developing a predictive theoretical model of melt ponds which accounts for
the most basic physics of the system, and which yields realistic pond configurations obtained through
minimization of the energy of the model. After all, we are interested in a solid-liquid phase transition from sea
ice to sea water, albeit over large length and time scales. We turn then to the statistical mechanics of the Ising
model to introduce such an approach [13, 18]. Only the most essential physics is incorporated—in the same way
that the original Ising model includes only the most basic aspects of a ferromagnet in an external magnetic field.

We envision a square lattice of surface patches or pixels of melt water or ice, corresponding to the classical
spin up or spin down states, respectively. They are collectively influenced by an external forcing field, and
interact only with their nearest neighbors. The energy of the melting sea ice system is expressed similarly to how
the energy of a ferromagnet is estimated in the Ising Hamiltonian. Pond-like configurations, or connected
regions of ‘up spins,’ result from a series of energy reducing updates of an initially random state. Glauber spin flip
dynamics guide the flow of configurations toward realistic melt pond states which are local energy minima, or
metastable states. We remark that while we can estimate the time scale associated with a spin flip—that is,
melting or freezing a surface patch under certain conditions, we are not using the present model to directly
describe the time evolution of ponds over the melt season.

Our introduction of a melt pond Ising model addresses a central issue in climate science, that is, linkage of
scales. How can knowledge of local interactions be used to predict macroscopic behavior relevant to large scale,
coarse-grained models? This is the type of fundamental problem that is solved in statistical physics [18, 13] and
homogenization for composite materials [19, 15]. Illustrating the potentially broad applicability of this
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approach, an Ising model for tropical convection was developed [20] to represent atmospheric processes
unresolved by coarse scale climate models.

2. Theoretical framework

First, we recall the most general form of the classical Ising free energy
H = *Z Hisi - Z]ijsisj: (1)
i (i)

where i ranges over a two dimensional square lattice with periodic boundary conditions, the s; are spin variables
taking the values 41 or —1 corresponding to spin up or spin down, and (i, j) denotes nearest neighbors. The
parameters H;and J;; represent the external magnetic field and coupling constants, respectively. In our melt
pond Ising model the state variable is a binary (or spin) variable s; such thats; = 41 corresponds to absorptive
melt water on the surface of our pixelated model sea ice floe and s; = —1 corresponds instead to reflective ice or
snow on the surface. In addition, a temperature T can be defined which characterizes the strength of thermal
fluctuations, but here we set T = 0 assuming for simplicity that environmental noise does not significantly
influence melt pond geometry. The two dimensional nature of the Ising model we consider here is most relevant
to thinner, flatter first year sea ice, rather than thicker multiyear ice where it may be more important to include
three dimensional effects.

To describe nontrivial spin clustering at zero temperature, the H; and/or Jj;are chosen as random variables;
the resulting models are collectively known as disordered Ising models [21]. In particular, one recovers the
classical random field Ising model (RFIM) if the H; are independent random variables and the J;;are constant. At
zero temperature, the system is usually assumed to follow Glauber single spin flip dynamics [22]: at each update
step, the flip is accepted if H decreases and rejected if H increases. The spins are updated until no spin flip can
further decrease H. At this point, the system has found alocal minimum of H, known as a metastable state. Note
that this state is not necessarily the ground state, which is the global minimum of H.

Metastable states are especially relevant to physical systems near phase transitions, including supercooled
liquids [23] and atmospheric aerosol particles [24]. On a short time scale, the system appears to be at an
equilibrium state, but on longer time scales, it undergoes transitions between different metastable states [25].
For disordered Ising models, metastable states have been realized experimentally in, for example, doped
manganites [26] and colossal magnetoresistive manganites [27]. Despite their importance, there are many
unresolved issues concerning metastable states [22], with analytical results largely restricted to one-
dimension [28].

3. Random field Ising model

The key factor controlling melt pond configurations is the pre-melt sea ice topography, represented by random
variables h;. In the spirit of creating order from disorder, these variables are assumed to be independent Gaussian
with zero mean and unit variance. The lattice constanta = 1 m is specified as the length scale above which
important spatially correlated fluctuations occur in the power spectrum of sea ice topography (see
supplementary materials available online at stacks.iop.org/NJP/21/063029 /mmedia). We use the following
update rule for Glauber dynamics, depending on whether there is a majority among the four nearest neighbors
of a chosenssite. If a majority exists, the site is updated to align with the majority due to heat diffusion between
neighboring sites. Otherwise, we introduce a tiebreaker rule that describes the tendency for water to fill troughs:
the chosen site is updated to ice if its pre-melt ice height is positive, and water otherwise; see figure 1(b). This
update rule does not depend on any parameters other than A;.

The above update rule can be restated as minimizing the classical RFIM free energy [29, 30]

H=> (hi — H)s; — Y Jsisj, )
i (i>j)

with the uniformly applied field H = 0 and the coupling constant ] — +00; see supplementary materials for a
brief discussion of the H == 0 case. To facilitate comparison with geophysical observations, the order parameter
will be taken as the pond fraction F, which is defined as the fraction of up spins and therefore related to the
magnetization Mby F = (M + 1)/2. At] = 0, there is a unique metastable state, namely the ground state, given
bys; = +1ifh; < H,ands; = —1ifh; > H. This process can only yield the correct melt pond geometry if the
random variables /; are highly correlated [16]. As J increases, metastable states appear [31] at a wider range of
pond fractions, with the entire range F € [0, 1] covered for large enough J. As ] — 400, the two ground states
aregivenbys; = +1ors; = —1foralli
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Figure 2. Melt ponds as metastable islands of like spins in our random field Ising model. Simulation results are shown for metastable
states of the RFIM at H = 0 andJ = 5. The output spin configurations are shown ona 128 x 128 portion of the 1024 x 1024 lattice
with (a) Fyy = 0.15;5(b) Fyue = 0.305(c) Foue = 0.45. Pixels are colored blue for water (s; = +1) and white for ice (s; = —1).

4. Geometry of metastable states

Below we present numerical results for the zero temperature Glauber dynamics of the RFIM, with the lattice size
takentobe 1024 x 1024. The input spin configurations s; are independent binary variables (Bernoulli trials) that
equal +1 with probability F;,, and —1 with probability 1 — F,,, where F;,, denotes the input pond fraction. Note
that these variables are uncorrelated with the ;. Following a random update sequence, the Glauber dynamics
eventually yield a metastable state with output pond fraction F,,.. Note that this metastable state is generically
distinct from the two ground states unless F;, = 0 or 1. Figure 2 shows the output configurations with

Fout = 0.15,0.30, and 0.45, which respectively result from F;,, = 0.34, 0.42, and 0.48. This metastability is
consistent with previous findings from a dynamical systems analysis [32].

The visual resemblance between the simulations in figures 2(a), (c) and the photos in figure 1(a) is now
apparent, particularly in the well developed ponds where the minimum energy configurations of the model are
quite evolved, coarse-grained and ‘pond-like’ in comparison to the purely random initial states. In the following
we will analyze in detail the up spin clusters in figure 2(c) at F,,,,, = 0.45.

Figure 3(a) shows the log—log plot of the perimeter Pversus the area A for these clusters (shown in physical
units as Pa and Aa®). Figure 3(b) shows the pond size distribution function prob(A). It exhibits power law scaling
prob(A) ~ AS with the exponent ¢ = —1.58 %+ 0.03 for pond areas in the range 10 m* < A < 1000 m?, in
excellent agreement with the observed value [11] of about —3/2.

A key feature of multi-cluster systems is the tendency for smaller clusters to have simple shapes and larger
clusters to have complex shapes. This onset of complexity can be quantified by an increase in the fractal
dimension D, defined in terms of the perimeter Pand thearea A as P ~ /A P The input spin configuration
corresponds to a site percolation process with occupation probability F;, < 0.5, below the site percolation
threshold of about 0.593 [33]. The Ising model takes these purely random states as input and produces the
metastable states represented by the cloud of points in figure 3(a). The upper edge of this cloud has an almost
constant fractal dimension close to the theoretical value of 91/48 ~ 1.896 for site percolation clusters right
below the percolation threshold [33]. Therefore, this upper edge represents the unphysical clusters reminiscent
of the original input, which are least affected by the Glauber dynamics. To identify the physical clusters that
resemble real melt ponds, we thus choose the lower edge, or equivalently the smallest possible P for each A, as
highlighted in figure 3(a). Within this data set, we further exclude both the smaller ponds with A < 15 m” which
are affected by the discreteness of the lattice, and the larger ponds with A > 400 m? which are subject to
substantial sampling variability because of their rareness.

Figure 3(c) compares our Ising model D(A) function (thin solid black curve) with the observed fractal
dimension dependence on area for real melt ponds (thick gray data curve) [12]. The model thin black curve is a
best fit to the data points in the (A, P)-plane for model ponds, as in [16]. From this best fit curve we find that the
transition happens around the inflection point A.a? ~ 90 m®. This predicted value agrees well with the
observed value [12] of about 100 m?, with the full observed D(A) for real ponds reproduced in figure 3(d). The
width of the transition regime in log(A) in figure 3(c) also agrees well with figure 3(d). Finally, supplementary
figure 2 displays another quantifier of the onset of complexity that accounts for the entire collection of points in
the (A, P)-plane. It yields the same critical transition area as before.
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Figure 3. Geometrical characteristics of Ising model melt ponds. Simulation data in this figure are for the up-spin clusters in

figure 2(c). (a) Log-log plot of the perimeter P versus the area A, rendered as a (rescaled) density plot. The lower edge of this cloud of
points, highlighted by filled black circles, is determined by dividing log(A) into bins of size 0.2 and computing the minimum of log(P)
for each bin. The reference lines have slopes 0.5 and 1, which correspond respectively to the fractal dimensions D = 1and D = 2. (b)
Log-log plot of the pond size distribution function prob(A), with bin size 0.2 and very small ponds with A < 5 m” excluded. The
reference line has slope —1.58. (c) Plot of the fractal dimension D as a function of A (log scale) for our melt pond Ising model (thin
solid curve) compared with the data curve (gray) for real melt ponds in (d) [12]. The solid curve is computed by fitting a suitable
smooth function to the lower edge of the data points in panel (a) within the range 15 m* < A < 400 m?. (d) (Reproduced [12] with
permission.) Fractal dimension as a function of area (log scale) based on image analysis of real melt ponds [12]. In panels (a)—(c), A and
Pare shown in physical units with the lattice constanta = 1 m, and the number of sites is increased to 8192 x 8192 to improve the
statistics.

5. A scheme for more realistic pond boundaries

One discrepancy with observations is that our smaller model ponds are non-Euclidean on average, namely that
they have an average fractal dimension greater than 1 (see figure 2(c)). To address this issue and better describe
the physical process of melt pond formation, we can allow the ice topography h; to co-evolve with the spin
configuration s;. A possible evolution scheme is outlined next.

Let us introduce a discrete time index 7, and denote the ice topography and the spin configuration at time n
respectively by i} and s}’ The evolution from time 71 to time 7 + 1 proceeds as follows. First, s/ "' is determined
as before by minimizing the RFIM free energy H, with k! being the pre-melt ice topography and s} being the
input spin configuration. Second, k" is determined by the following formula

hin+1 :f(n, hin’ Sin) Sin+1) _|_ ginJrl’ (3)

where the function fand the random field gi"Jrl represent the deterministic and stochastic mechanisms of the

topography evolution, encompassing internal processes of melting and freezing, as well as external influences
such as environmental forcing, drainage processes, seasonal patterns, etc. In this evolution scheme, the system
transitions between metastable states of an evolving free energy landscape, with the equilibration time estimated
to be 4-5 d (see supplementary materials).

Here, instead of proposing a realistic expression for the function f, we simply consider f = 0 for illustration
purposes. In this case, the h}' at successive time stepsn = 0, 1, 2,--- are independent (in both space and time)
Gaussian variables with zero mean and unit variance. As shown in figure 4, the boundaries become smoother as
nincreases. As a result, the fractal dimensions of the smaller ponds become closer to 1, while for the larger ponds
it remains close to 2, as is evident from comparing figures 3(a) and 4(e). The shapes of the simulated ponds in
figure 4(b) closely resemble those of the observed melt ponds in figure 4(d). The power law scaling exponent of
the pond size distribution function is found tobe { = —1.71 &+ 0.02, as shown in figure 4(f).

6. Discussion

Our melt pond Ising model—with only one measured input parameter—produces ponds that are not only quite
realistic in appearance, but with geometrical characteristics that quantitatively match very closely the
observations on pond sizes and fractal dimension. This one parameter sets the length of a side of a square pixel in
the lattice, and represents the scale above which the variations in snow topography are significant. Moreover, as
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Figure 4. Time evolution of metastable states with an evolving ice topography. Simulation results are shown for metastable states of
theRFIMatH = OandJ = 10. The hf'atn = 0,1,2,--- areassumed to be independent Gaussian variables with zero mean and unit
variance. The input configuration s{ has pond fraction Fy, = 0.495. The output configurations s} are shown ona 165 x 165 lattice at
(@)n = 2;(b)n = 4;(c) n = 8.Pixels are colored blue for water (s; = +1) and white forice (s; = —1). (d) Aerial image of Arctic melt
ponds. Each side of this photo is 165 m. Panels (e), (f) show the geometric characteristics of the up-spin clusters in panel (b). (e) Log—
log plot of the perimeter Pversus the area A, rendered as a (rescaled) density plot. The reference lines are at the same location as those
in figure 3(a) to facilitate comparison. (f) Log—log plot of the pond size distribution function prob(A), with bin size 0.2 and very small
pondswith A < 5 m” excluded. The reference line has slope —1.71.

energy is minimized via Glauber dynamics the model creates order from disorder, flowing from a random initial
state to a configuration with long range order.

The description of complex melt ponds in terms of a simple disordered system may well advance our ability
to model the future trajectory of the Arctic sea ice pack, e.g. through parameterizations in climate models. Our
approach based on energy minimization in statistical mechanics potentially opens new avenues for
incorporating ponds, particularly in higher resolution, micro- and meso-scale models for regions up to
hundreds of kilometers across. Efficient numerical algorithms which yield not only melt water volume but fast,
accurate information about how it is distributed—based on the ambient conditions, would be broadly useful in
sea ice dynamics, thermodynamics, and ecology. Assumptions about melt pond spatial structure influence the
sub-grid scale spatial pattern of melt pond depths, meaning how water is distributed over the sea ice thickness
distribution. These variations in water depth in turn markedly impact grid scale albedo.

The basic model presented here can be augmented to incorporate more detailed processes, such as the effect
of changes in snow topography—potentially relevant in a changing climate. For example, effects of anisotropy in
the topography can be included, as was studied in detail in [16]. The melt pond Ising model also offers the
potential for efficient yet geometrically sophisticated parameterizations of melt ponds and their impact in
climate models, as well as more refined models of sea ice physics and biology. In addition, the statistical physics
approach developed here may be generalizable to other systems near the transition point between ice and water,
such as tundra permafrost lakes, where the melting front has been described using a curve-shortening flow [34].

Minimal models such as the RFIM necessarily have limitations. Mathematically, the geometry of a fractal
cannot be fully captured by its interpolation on a lattice. Physically, the RFIM is inherently unable to resolve
processes at length scales smaller than the lattice constant. There, one may expect narrow water channels
responsible for connecting smaller ponds into larger ponds. The inability to resolve such features likely causes
the percolation threshold of the RFIM to differ from observations. For the metastable states obtained from
random inputs, the percolation threshold is very close to 0.5 at H = 0 (see supplementary materials). This
threshold decreases as H decreases, but likely always exceeds the value for real melt ponds.
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